Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 78
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Gastroenterology ; 165(4): 986-998.e11, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37429363

RESUMO

BACKGROUND & AIMS: Acute diarrheal diseases are the second most common cause of infant mortality in developing countries. This is contributed to by lack of effective drug therapy that shortens the duration or lessens the volume of diarrhea. The epithelial brush border sodium (Na+)/hydrogen (H+) exchanger 3 (NHE3) accounts for a major component of intestinal Na+ absorption and is inhibited in most diarrheas. Because increased intestinal Na+ absorption can rehydrate patients with diarrhea, NHE3 has been suggested as a potential druggable target for drug therapy for diarrhea. METHODS: A peptide (sodium-hydrogen exchanger 3 stimulatory peptide [N3SP]) was synthesized to mimic the part of the NHE3 C-terminus that forms a multiprotein complex that inhibits NHE3 activity. The effect of N3SP on NHE3 activity was evaluated in NHE3-transfected fibroblasts null for other plasma membrane NHEs, a human colon cancer cell line that models intestinal absorptive enterocytes (Caco-2/BBe), human enteroids, and mouse intestine in vitro and in vivo. N3SP was delivered into cells via a hydrophobic fluorescent maleimide or nanoparticles. RESULTS: N3SP uptake stimulated NHE3 activity at nmol/L concentrations under basal conditions and partially reversed the reduced NHE3 activity caused by elevated adenosine 3',5'-cyclic monophosphate, guanosine 3',5'-cyclic monophosphate, and Ca2+ in cell lines and in in vitro mouse intestine. N3SP also stimulated intestinal fluid absorption in the mouse small intestine in vivo and prevented cholera toxin-, Escherichia coli heat-stable enterotoxin-, and cluster of differentiation 3 inflammation-induced fluid secretion in a live mouse intestinal loop model. CONCLUSIONS: These findings suggest pharmacologic stimulation of NHE3 activity as an efficacious approach for the treatment of moderate/severe diarrheal diseases.


Assuntos
Enterotoxinas , Trocadores de Sódio-Hidrogênio , Camundongos , Animais , Humanos , Trocador 3 de Sódio-Hidrogênio/metabolismo , Enterotoxinas/farmacologia , Enterotoxinas/metabolismo , Células CACO-2 , Trocadores de Sódio-Hidrogênio/metabolismo , Enterócitos/metabolismo , Sódio/metabolismo , Diarreia/tratamento farmacológico , Diarreia/prevenção & controle , Diarreia/induzido quimicamente , Peptídeos/efeitos adversos , Microvilosidades/metabolismo
2.
Methods Mol Biol ; 2650: 207-223, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37310634

RESUMO

The coordinated interaction between the intestinal epithelium and immune cells is required to maintain proper barrier function and mucosal host defenses to the harsh external environment of the gut lumen. Complementary to in vivo models, there is a need for practical and reproducible in vitro models that employ primary human cells to confirm and advance our understanding of mucosal immune responses under physiologic and pathophysiologic conditions. Here we describe the methods to co-culture human intestinal stem cell-derived enteroids grown as confluent monolayers on permeable supports with primary human innate immune cells (e.g., monocyte-derived macrophages and polymorphonuclear neutrophils). This co-culture model reconstructs the cellular framework of the human intestinal epithelial-immune niche with distinct apical and basolateral compartments to recreate host responses to luminal and submucosal challenges, respectively. Enteroid-immune co-cultures enable multiple outcome measures to interrogate important biological processes such as epithelial barrier integrity, stem cell biology, cellular plasticity, epithelial-immune cells crosstalk, immune cell effector functions, changes in gene expression (i.e., transcriptomic, proteomic, epigenetic), and host-microbiome interactions.


Assuntos
Intestinos , Proteômica , Humanos , Técnicas de Cocultura , Mucosa Intestinal , Imunidade Inata
3.
STAR Protoc ; 4(2): 102335, 2023 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-37243601

RESUMO

Transcytosis is the primary mechanism by which macro-molecules transverse epithelial cell barriers. Here, we present an assay for measuring transcytosis and recycling of IgG in intestinal epithelial Caco-2 cells and primary human intestinal organoids. We describe steps for establishing human enteroids or Caco-2 cells and plating monolayers. We then provide procedures for a transcytosis and recycling assay and a luciferase assay. The protocol facilitates quantification of membrane trafficking and can be used to probe endosomal compartments unique to polarized epithelia. For complete details on the use and execution of this protocol, please refer to Maeda K et al. (2022).1.

4.
Sci Immunol ; 8(79): eabp9940, 2023 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-36608150

RESUMO

Allergic diseases are a global health challenge. Individuals harboring loss-of-function variants in transforming growth factor-ß receptor (TGFßR) genes have an increased prevalence of allergic disorders, including eosinophilic esophagitis. Allergic diseases typically localize to mucosal barriers, implicating epithelial dysfunction as a cardinal feature of allergic disease. Here, we describe an essential role for TGFß in the control of tissue-specific immune homeostasis that provides mechanistic insight into these clinical associations. Mice expressing a TGFßR1 loss-of-function variant identified in atopic patients spontaneously develop disease that clinically, immunologically, histologically, and transcriptionally recapitulates eosinophilic esophagitis. In vivo and in vitro, TGFßR1 variant-expressing epithelial cells are hyperproliferative, fail to differentiate properly, and overexpress innate proinflammatory mediators, which persist in the absence of lymphocytes or external allergens. Together, our results support the concept that TGFß plays a fundamental, nonredundant, epithelial cell-intrinsic role in controlling tissue-specific allergic inflammation that is independent of its role in adaptive immunity.


Assuntos
Esofagite Eosinofílica , Hipersensibilidade Imediata , Animais , Camundongos , Esofagite Eosinofílica/genética , Receptores de Fatores de Crescimento Transformadores beta/genética , Inflamação
5.
Nat Biotechnol ; 41(6): 824-831, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36702898

RESUMO

Human intestinal organoids (HIOs) derived from pluripotent stem cells provide a valuable model for investigating human intestinal organogenesis and physiology, but they lack the immune components required to fully recapitulate the complexity of human intestinal biology and diseases. To address this issue and to begin to decipher human intestinal-immune crosstalk during development, we generated HIOs containing immune cells by transplanting HIOs under the kidney capsule of mice with a humanized immune system. We found that human immune cells temporally migrate to the mucosa and form cellular aggregates that resemble human intestinal lymphoid follicles. Moreover, after microbial exposure, epithelial microfold cells are increased in number, leading to immune cell activation determined by the secretion of IgA antibodies in the HIO lumen. This in vivo HIO system with human immune cells provides a framework for future studies on infection- or allergen-driven intestinal diseases.


Assuntos
Células-Tronco Pluripotentes , Transplantes , Humanos , Animais , Camundongos , Intestinos , Mucosa Intestinal , Organoides
6.
J Autoimmun ; 134: 102961, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36470208

RESUMO

Regulatory T cell (Treg) therapy is a promising strategy to treat inflammatory bowel disease (IBD). Data from animal models has shown that Tregs specific for intestinal antigens are more potent than polyclonal Tregs at inhibiting colitis. Flagellins, the major structural proteins of bacterial flagella, are immunogenic antigens frequently targeted in IBD subjects, leading to the hypothesis that flagellin-specific Tregs could be an effective cell therapy for IBD. We developed a novel chimeric antigen receptor (CAR) specific for flagellin derived from Escherichia coli H18 (FliC). We used this CAR to confer FliC-specificity to human Tregs and investigated their therapeutic potential. FliC-CAR Tregs were activated by recombinant FliC protein but not a control flagellin protein, demonstrating CAR specificity and functionality. In a humanized mouse model, expression of the FliC-CAR drove preferential migration to the colon and expression of the activation marker PD1. In the presence of recombinant FliC protein in vitro, FliC-CAR Tregs were significantly more suppressive than control Tregs and promoted the establishment of colon-derived epithelial cell monolayers. These results demonstrate the potential of FliC-CAR Tregs to treat IBD and more broadly show the therapeutic potential of CARs targeting microbial-derived antigens.


Assuntos
Doenças Inflamatórias Intestinais , Receptores de Antígenos Quiméricos , Animais , Camundongos , Humanos , Receptores de Antígenos Quiméricos/genética , Receptores de Antígenos Quiméricos/metabolismo , Flagelina/metabolismo , Proteínas Recombinantes/metabolismo , Doenças Inflamatórias Intestinais/terapia , Doenças Inflamatórias Intestinais/metabolismo , Linfócitos T Reguladores
7.
mBio ; 13(3): e0094422, 2022 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-35652591

RESUMO

Polymorphonuclear neutrophils (PMN) are recruited to the gastrointestinal mucosa in response to inflammation, injury, and infection. Here, we report the development and the characterization of an ex vivo tissue coculture model consisting of human primary intestinal enteroid monolayers and PMN, and a mechanistic interrogation of PMN-epithelial cell interaction and response to Shigella, a primary cause of childhood dysentery. Cellular adaptation and tissue integration, barrier function, PMN phenotypic and functional attributes, and innate immune responses were examined. PMN within the enteroid monolayers acquired a distinct activated/migratory phenotype that was influenced by direct epithelial cell contact as well as by molecular signals. Seeded on the basal side of the intestinal monolayer, PMN were intercalated within the epithelial cells and moved paracellularly toward the apical side. Cocultured PMN also increased basal secretion of interleukin 8 (IL-8). Shigella added to the apical surface of the monolayers evoked additional PMN phenotypic adaptations, including increased expression of cell surface markers associated with chemotaxis and cell degranulation (CD47, CD66b, and CD88). Apical Shigella infection triggered rapid transmigration of PMN to the luminal side, neutrophil extracellular trap (NET) formation, and bacterial phagocytosis and killing. Shigella infection modulated cytokine production in the coculture; apical monocyte chemoattractant protein (MCP-1), tumor necrosis factor alpha (TNF-α), and basolateral IL-8 production were downregulated, while basolateral IL-6 secretion was increased. We demonstrated, for the first time, PMN phenotypic adaptation and mobilization and coordinated epithelial cell-PMN innate response upon Shigella infection in the human intestinal environment. The enteroid monolayer-PMN coculture represents a technical innovation for mechanistic interrogation of gastrointestinal physiology, host-microbe interaction, innate immunity, and evaluation of preventive/therapeutic tools. IMPORTANCE Studies of mucosal immunity and microbial host cell interaction have traditionally relied on animal models and in vitro tissue culture using immortalized cancer cell lines, which yield nonphysiological and often unreliable results. Herein, we report the development and characterization of an ex vivo enteroid-PMN coculture consisting of normal human intestinal epithelium and a mechanistic interrogation of PMN and epithelial cell interaction and function in the context of Shigella infection. We demonstrated tissue-driven phenotypic and functional adaptation of PMN and a coordinated epithelial cell and PMN response to Shigella, a primary cause of dysentery in young children in the developing world.


Assuntos
Disenteria Bacilar , Shigella , Animais , Células Cultivadas , Pré-Escolar , Técnicas de Cocultura , Disenteria Bacilar/metabolismo , Células Epiteliais/metabolismo , Humanos , Interleucina-8 , Mucosa Intestinal/metabolismo , Neutrófilos , Shigella/metabolismo
9.
Cell Host Microbe ; 30(2): 216-231.e5, 2022 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-35143768

RESUMO

Polarized epithelial cells form an essential barrier against infection at mucosal surfaces. Many pathogens breach this barrier to cause disease, often by co-opting cellular endocytosis mechanisms to enter the cell through the lumenal (apical) cell surface. We recently discovered that the loss of the cell polarity gene PARD6B selectively diminishes apical endosome function. Here, we find that in response to the entry of certain viruses and bacterial toxins into the epithelial cells via the apical membrane, PARD6B and aPKC, two components of the PARD6B-aPKC-Cdc42 apical polarity complex, undergo rapid proteasome-dependent degradation. The perturbation of apical membrane glycosphingolipids by toxin- or virus-binding initiates degradation of PARD6B. The loss of PARD6B causes the depletion of apical endosome function and renders the cell resistant to further infection from the lumenal cell surface, thus enabling a form of cell-autonomous host defense.


Assuntos
Toxinas Bacterianas , Vírus , Toxinas Bacterianas/metabolismo , Polaridade Celular/fisiologia , Endossomos/metabolismo , Células Epiteliais , Proteína Quinase C/metabolismo , Vírus/metabolismo
10.
Cell Rep ; 38(3): 110283, 2022 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-35045294

RESUMO

Acute damage to the intestinal epithelium can be repaired via de-differentiation of mature intestinal epithelial cells (IECs) to a stem-like state, but there is a lack of knowledge on how intestinal stem cells function after chronic injury, such as in inflammatory bowel disease (IBD). We developed a chronic-injury model in human colonoid monolayers by repeated rounds of air-liquid interface and submerged culture. We use this model to understand how chronic intestinal damage affects the ability of IECs to (1) respond to microbial stimulation, using the Toll-like receptor 5 (TLR5) agonist FliC and (2) regenerate and protect the epithelium from further damage. Repeated rounds of damage impair the ability of IECs to regrow and respond to TLR stimulation. We also identify mRNA expression and DNA methylation changes in genes associated with IBD and colon cancer. This methodology results in a human model of recurrent IEC injury like that which occurs in IBD.


Assuntos
Técnicas de Cultura de Células/métodos , Mucosa Intestinal/fisiologia , Organoides/fisiologia , Neoplasias do Colo , Metilação de DNA , Humanos , Doenças Inflamatórias Intestinais , Regeneração/fisiologia , Células-Tronco/fisiologia
11.
Cell Mol Gastroenterol Hepatol ; 13(1): 219-232, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34418586

RESUMO

BACKGROUND & AIMS: One of the features of ulcerative colitis (UC) is a defect in the protective mucus layer. This has been attributed to a reduced number of goblet cells (GCs). However, it is not known whether abnormal GC mucus secretion also contributes to the reduced mucus layer. Our aims were to investigate whether GC secretion was abnormal in UC and exists as a long-term effect of chronic inflammation. METHODS: Colonoids were established from intestinal stem cells of healthy subjects (HS) and patients with UC. Colonoids were maintained as undifferentiated (UD) or induced to differentiate (DF) and studied as three-dimensional or monolayers on Transwell filters. Total RNA was extracted for quantitative real-time polymerase chain reaction analysis. Carbachol and prostaglandin E2 mediated mucin stimulation was examined by MUC2 IF/confocal microscopy and transmission electron microscopy. RESULTS: Colonoids from UC patients can be propagated over many passages; however, they exhibit a reduced rate of growth and transepithelial electrical resistance compared with HS. Differentiated UC colonoid monolayers form a thin and non-continuous mucus layer. UC colonoids have increased expression of secretory lineage markers ATOH1 and SPDEF, along with MUC2 positive GCs, but failed to secrete mucin in response to the cholinergic agonist carbachol and prostaglandin E2, which caused increased secretion in HS. Exposure to tumor necrosis factor α (5 days) reduced the number of GCs, with a greater percentage decrease in UC colonoids compared with HS. CONCLUSIONS: Chronic inflammation in UC causes long-term changes in GCs, leading to abnormal mucus secretion. This continued defect in GC mucus secretion may contribute to the recurrence in UC.


Assuntos
Colite Ulcerativa , Colite Ulcerativa/patologia , Células Caliciformes/patologia , Humanos , Inflamação/patologia , Mucosa Intestinal/metabolismo , Mucinas/metabolismo
12.
Gut Microbes ; 13(1): 1988390, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34793276

RESUMO

Many pathogens use M cells to access the underlying Peyer's patches and spread to systemic sites via the lymph as demonstrated by ligated loop murine intestinal models. However, the study of interactions between M cells and microbial pathogens has stalled due to the lack of cell culture systems. To overcome this obstacle, we use human ileal enteroid-derived monolayers containing five intestinal cell types including M cells to study the interactions between the enteric pathogen, Yersinia pseudotuberculosis (Yptb), and M cells. The Yptb type three secretion system (T3SS) effector Yops inhibit host defenses including phagocytosis and are critical for colonization of the intestine and Peyer's patches. Therefore, it is not understood how Yptb traverses through M cells to breach the epithelium. By growing Yptb under two physiological conditions that mimic the early infectious stage (low T3SS-expression) or host-adapted stage (high T3SS-expression), we found that large numbers of Yptb specifically associated with M cells, recapitulating murine studies. Transcytosis through M cells was significantly higher by Yptb expressing low levels of T3SS, because YopE and YopH prevented Yptb uptake. YopE also caused M cells to extrude from the epithelium without inducing cell-death or disrupting monolayer integrity. Sequential infection with early infectious stage Yptb reduced host-adapted Yptb association with M cells. These data underscore the strength of enteroids as a model by discovering that Yops impede M cell function, indicating that early infectious stage Yptb more effectively penetrates M cells while the host may defend against M cell penetration of host-adapted Yptb.


Assuntos
Proteínas da Membrana Bacteriana Externa/metabolismo , Mucosa Intestinal/citologia , Mucosa Intestinal/microbiologia , Yersinia pseudotuberculosis/fisiologia , Adesinas Bacterianas/genética , Adesinas Bacterianas/metabolismo , Proteínas da Membrana Bacteriana Externa/genética , Proteínas Ativadoras de GTPase/metabolismo , Humanos , Íleo/citologia , Mucosa Intestinal/metabolismo , Modelos Biológicos , Organoides/citologia , Proteínas Tirosina Fosfatases/genética , Proteínas Tirosina Fosfatases/metabolismo , Temperatura , Transcitose , Migração Transendotelial e Transepitelial , Sistemas de Secreção Tipo III/genética , Sistemas de Secreção Tipo III/metabolismo , Proteína rhoA de Ligação ao GTP/metabolismo
13.
Front Cell Infect Microbiol ; 11: 693090, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34307195

RESUMO

Contamination of fomites by human norovirus (HuNoV) can initiate and prolong outbreaks. Fomite swabbing is necessary to predict HuNoV exposure and target interventions. Historically, swab recovered HuNoV has been measured by molecular methods that detect viral RNA but not infectious HuNoV. The recent development of HuNoV cultivation in human intestinal enteroids (HIEs) enables detection of infectious HuNoV. It is unknown if the swabbing process and swab matrix will allow for cultivation of fomite recovered HuNoV. We used HIEs to culture swab-recovered HuNoV GII.4 Sydney from experimentally infected surfaces-a hospital bed tray (N = 32), door handle (N = 10), and sanitizer dispenser (N = 11). Each surface was swabbed with macrofoam swabs premoistened in PBS plus 0.02% Tween80. Swab eluate was tested for infectious HuNoV by cultivation in HIE monolayers. Infectious HuNoV can be recovered from surfaces inoculated with at least 105 HuNoV genome equivalents/3 cm2. In total, 57% (N = 53) of recovered swabs contained infectious HuNoV detected by HIEs. No difference in percent positive swabs was observed between the three surfaces at p = 0.2. We demonstrate that fomite swabbing can be combined with the HIE method to cultivate high titer infectious HuNoV from the environment, filling a significant gap in HuNoV detection. Currently, high titers of HuNoV are required to measure growth in HIEs and the HIE system precludes absolute quantification of infectious viruses. However, the HIE system can provide a binary indication of infectious HuNoV which enhances existing detection methods. Identification of infectious HuNoVs from swabs can increase monitoring accuracy, enhance risk estimates, and help prevent outbreaks.


Assuntos
Infecções por Caliciviridae , Norovirus , Fômites , Humanos , Intestinos , Norovirus/genética , RNA Viral/genética
14.
Food Environ Virol ; 13(4): 470-484, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34191266

RESUMO

Human noroviruses (HuNoV) are the leading cause of gastrointestinal illness and environmental monitoring is crucial to prevent HuNoV outbreaks. The recent development of a HuNoV cell culture assay in human intestinal enteroids (HIEs) has enabled detection of infectious HuNoV. However, this complex approach requires adaptation of HIEs to facilitate HuNoV replication from environmental matrixes. Integrating data from 200 experiments, we examined six variables: HIE age, HIE basement membrane compounds (BMC), HuNoV inoculum processing, HuNoV inoculum volume, treatment of data below limit of detection (LOD), and cutoff criteria for determining positive HuNoV growth. We infected HIEs with HuNoV GII.4 Sydney positive stool and determined 1.4 × 103 genome equivalents per HIE well were required for HuNoV replication. HIE age had minimal effect on assay outcomes. LOD replacement and cutoff affected data interpretation, with lower values resulting in higher estimated HuNoV detection. Higher inoculum volumes lead to minimal decreases in HuNoV growth, with an optimal volume of 250uL facilitating capture of low concentrations of HuNoVs present in environmental isolates. Processing of HuNoV inoculum is valuable for disinfection studies and concentrating samples but is not necessary for all HIE applications. This work enhances the HuNoV HIE cell culture approach for environmental monitoring. Future HIE research should report cell age as days of growth and should clearly describe BMC choice, LOD handling, and positive cutoff.


Assuntos
Infecções por Caliciviridae , Norovirus , Monitoramento Ambiental , Humanos , Intestinos , Norovirus/genética
15.
bioRxiv ; 2021 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-33948596

RESUMO

Diarrhea occurs in 2-50% of cases of COVID-19 (∼8% is average across series). The diarrhea does not appear to account for the disease mortality and its contribution to the morbidity has not been defined, even though it is a component of Long Covid or post-infectious aspects of the disease. Even less is known about the pathophysiologic mechanism of the diarrhea. To begin to understand the pathophysiology of COVID-19 diarrhea, we exposed human enteroid monolayers obtained from five healthy subjects and made from duodenum, jejunum, and proximal colon to live SARS-CoV-2 and virus like particles (VLPs) made from exosomes expressing SARS-CoV-2 structural proteins (Spike, Nucleocapsid, Membrane and Envelope). Results: 1) Live virus was exposed apically for 90 min, then washed out and studied 2 and 5 days later. SARS-Cov-2 was taken up by enteroids and live virus was present in lysates and in the apical>>basolateral media of polarized enteroids 48 h after exposure. This is the first demonstration of basolateral appearance of live virus after apical exposure. High vRNA concentration was detected in cell lysates and in the apical and basolateral media up to 5 days after exposure. 2) Two days after viral exposure, cytokine measurements of media showed significantly increased levels of IL-6, IL-8 and MCP-1. 3) Two days after viral exposure, mRNA levels of ACE2, NHE3 and DRA were reduced but there was no change in mRNA of CFTR. NHE3 protein was also decreased. 4) Live viral studies were mimicked by some studies with VLP exposure for 48 h. VLPs with Spike-D614G bound to the enteroid apical surface and was taken up; this resulted in decreased mRNA levels of ACE2, NHE3, DRA and CFTR. 4) VLP effects were determined on active anion secretion measured with the Ussing chamber/voltage clamp technique. S-D614G acutely exposed to apical surface of human ileal enteroids did not alter the short-circuit current (Isc). However, VLPS-D614G exposure to enteroids that were pretreated for ∼24 h with IL-6 plus IL-8 induced a concentration dependent increase in Isc indicating stimulated anion secretion, that was delayed in onset by ∼8 min. The anion secretion was inhibited by apical exposure to a specific calcium activated Cl channel (CaCC) inhibitor (AO1) but not by a specific CFTR inhibitor (BP027); was inhibited by basolateral exposure to the K channel inhibit clortimazole; and was prevented by pretreatment with the calcium buffer BAPTA-AM. 5) The calcium dependence of the VLP-induced increase in Isc was studied in Caco-2/BBe cells stably expressing the genetically encoded Ca2+ sensor GCaMP6s. 24 h pretreatment with IL-6/IL-8 did not alter intracellular Ca2+. However, in IL-6/IL-8 pretreated cells, VLP S-D614G caused appearance of Ca 2+ waves and an overall increase in intracellular Ca 2+ with a delay of ∼10 min after VLP addition. We conclude that the diarrhea of COVID-19 appears to an example of a calcium dependent inflammatory diarrhea that involves both acutely stimulated Ca2+ dependent anion secretion (stimulated Isc) that involves CaCC and likely inhibition of neutral NaCl absorption (decreased NHE3 protein and mRNA and decreased DRA mRNA).

16.
Mol Metab ; 44: 101129, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33246140

RESUMO

OBJECTIVE: The mechanisms behind the efficacy of bariatric surgery (BS) for treating obesity and type 2 diabetes, particularly with respect to the influence of the small bowel, remain poorly understood. In vitro and animal models are suboptimal with respect to their ability to replicate the human intestinal epithelium under conditions induced by obesity. Human enteroids have the potential to accelerate the development of less invasive anti-obesity therapeutics if they can recapitulate the pathophysiology of obesity. Our aim was to determine whether adult stem cell-derived enteroids preserve obesity-characteristic patient-specific abnormalities in carbohydrate absorption and metabolism. METHODS: We established 24 enteroid lines representing 19 lean, overweight, or morbidly obese patients, including post-BS cases. Dietary glucose absorption and gluconeogenesis in enteroids were measured. The expression of carbohydrate transporters and gluconeogenic enzymes was assessed and a pharmacological approach was used to dissect the specific contribution of each transporter or enzyme to carbohydrate absorption and metabolism, respectively. RESULTS: Four phenotypes representing the relationship between patients' BMI and intestinal dietary sugar absorption were found, suggesting that human enteroids retain obese patient phenotype heterogeneity. Intestinal glucose absorption and gluconeogenesis were significantly elevated in enteroids from a cohort of obese patients. Elevated glucose absorption was associated with increased expression of SGLT1 and GLUT2, whereas elevated gluconeogenesis was related to increased expression of GLUT5, PEPCK1, and G6Pase. CONCLUSIONS: Obesity phenotypes preserved in human enteroids provide a mechanistic link to aberrant dietary carbohydrate absorption and metabolism. Enteroids can be used as a preclinical platform to understand the pathophysiology of obesity, study the heterogeneity of obesity mechanisms, and identify novel therapeutics.


Assuntos
Gluconeogênese/fisiologia , Glucose/metabolismo , Intestino Delgado/metabolismo , Obesidade Mórbida/metabolismo , Fenótipo , Células-Tronco/metabolismo , Animais , Cirurgia Bariátrica , Diabetes Mellitus Tipo 2/metabolismo , Carboidratos da Dieta/metabolismo , Transportador de Glucose Tipo 2/metabolismo , Transportador de Glucose Tipo 5/metabolismo , Humanos , Absorção Intestinal , Mucosa Intestinal/metabolismo , Transportador 1 de Glucose-Sódio/metabolismo
17.
Front Cell Dev Biol ; 8: 583919, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33282867

RESUMO

The intestinal epithelium is replenished every 3-4 days through an orderly process that maintains important secretory and absorptive functions while preserving a continuous mucosal barrier. Intestinal epithelial cells (IECs) derive from a stable population of intestinal stem cells (ISCs) that reside in the basal crypts. When intestinal injury reaches the crypts and damages IECs, a mechanism to replace them is needed. Recent research has highlighted the existence of distinct populations of acute and chronic damage-associated ISCs and their roles in maintaining homeostasis in several intestinal perturbation models. What remains unknown is how the damage-associated regenerative ISC population functions in the setting of chronic inflammation, as opposed to acute injury. What long-term consequences result from persistent inflammation and other cellular insults to the ISC niche? What particular "regenerative" cell types provide the most efficacious restorative properties? Which differentiated IECs maintain the ability to de-differentiate and restore the ISC niche? This review will cover the latest research on damage-associated regenerative ISCs and epigenetic factors that determine ISC fate, as well as provide opinions on future studies that need to be undertaken to understand the repercussions of the emergence of these cells, their contribution to relapses in inflammatory bowel disease, and their potential use in therapeutics for chronic intestinal diseases.

18.
Curr Protoc Immunol ; 131(1): e113, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33166041

RESUMO

Human intestinal enteroids derived from adult stem cells offer a relevant ex vivo system to study biological processes of the human gut. They recreate cellular and functional features of the intestinal epithelium of the small intestine (enteroids) or colon (colonoids) albeit limited by the lack of associated cell types that help maintain tissue homeostasis and respond to external challenges. In the gut, innate immune cells interact with the epithelium, support barrier function, and deploy effector functions. We have established a co-culture system of enteroid/colonoid monolayers and underlying macrophages and polymorphonuclear neutrophils to recapitulate the cellular framework of the human intestinal epithelial niche. Enteroids are generated from biopsies or resected tissue from any segment of the human gut and maintained in long-term cultures as three-dimensional structures through supplementation of stem cell growth factors. Immune cells are isolated from fresh human whole blood or frozen peripheral blood mononuclear cells (PBMC). Monocytes from PBMC are differentiated into macrophages by cytokine stimulation prior to co-culture. The methods are divided into the two main components of the model: (1) generating enteroid/colonoid monolayers and isolating immune cells and (2) assembly of enteroid/colonoid-immune cell co-cultures with separate apical and basolateral compartments. Co-cultures containing macrophages can be maintained for 48 hr while those involving neutrophils, due to their shorter life span, remain viable for 4 hr. Enteroid-immune co-cultures enable multiple outcome measures, including transepithelial resistance, production of cytokines/chemokines, phenotypic analysis of immune cells, tissue immunofluorescence imaging, protein or mRNA expression, antigen or microbe uptake, and other cellular functions. © 2020 Wiley Periodicals LLC. Basic Protocol 1: Seeding enteroid fragments onto Transwells for monolayer formation Alternate Protocol: Seeding enteroid fragments for monolayer formation using trituration Basic Protocol 2: Isolation of monocytes and derivation of immune cells from human peripheral blood Basic Protocol 3: Isolation of neutrophils from human peripheral blood Basic Protocol 4: Assembly of enteroid/macrophage or enteroid/neutrophil co-culture.


Assuntos
Células-Tronco Adultas/citologia , Colo/citologia , Enterócitos/citologia , Imunoensaio/métodos , Mucosa Intestinal/imunologia , Macrófagos/imunologia , Neutrófilos/imunologia , Animais , Técnicas de Cocultura , Colo/imunologia , Citocinas/metabolismo , Humanos , Imunidade Inata , Mucosa Intestinal/citologia , Camundongos
19.
iScience ; 23(10): 101618, 2020 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-33089106

RESUMO

Intestinal regeneration and crypt hyperplasia after radiation or pathogen injury relies on Wnt signaling to stimulate stem cell proliferation. Mesenchymal Wnts are essential for homeostasis and regeneration in mice, but the role of epithelial Wnts remains largely uncharacterized. Using the enterohemorrhagic E. coli-secreted cytotoxin EspP to induce injury to human colonoids, we evaluated a simplified, epithelial regeneration model that lacks mesenchymal Wnts. Here, we demonstrate that epithelial-produced WNT2B is upregulated following injury and essential for regeneration. Hedgehog signaling, specifically activation via the ligand Desert Hedgehog (DHH), but not Indian or Sonic Hedgehog, is another driver of regeneration and modulates WNT2B expression. These findings highlight the importance of epithelial WNT2B and DHH in regulating human colonic regeneration after injury.

20.
FASEB J ; 34(12): 15922-15945, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33047400

RESUMO

Enterotoxigenic Bacteroides fragilis (ETBF) is a commensal bacterium of great importance to human health due to its ability to induce colitis and cause colon tumor formation in mice through the production of B. fragilis toxin (BFT). The formation of tumors is dependent on a pro-inflammatory signaling cascade, which begins with the disruption of epithelial barrier integrity through cleavage of E-cadherin. Here, we show that BFT increases levels of glucosylceramide, a vital intestinal sphingolipid, both in mice and in colon organoids (colonoids) generated from the distal colons of mice. When colonoids are treated with BFT in the presence of an inhibitor of glucosylceramide synthase (GCS), the enzyme responsible for generating glucosylceramide, colonoids become highly permeable, lose structural integrity, and eventually burst, releasing their contents into the extracellular matrix. By increasing glucosylceramide levels in colonoids via an inhibitor of glucocerebrosidase (GBA, the enzyme that degrades glucosylceramide), colonoid permeability was reduced, and bursting was significantly decreased. In the presence of BFT, pharmacological inhibition of GCS caused levels of tight junction protein 1 (TJP1) to decrease. However, when GBA was inhibited, TJP1 levels remained stable, suggesting that BFT-induced production of glucosylceramide helps to stabilize tight junctions. Taken together, our data demonstrate a glucosylceramide-dependent mechanism by which the colon epithelium responds to BFT.


Assuntos
Toxinas Bacterianas/toxicidade , Bacteroides fragilis/metabolismo , Colo/efeitos dos fármacos , Células Epiteliais/efeitos dos fármacos , Glucosilceramidas/metabolismo , Metaloendopeptidases/toxicidade , Transdução de Sinais/efeitos dos fármacos , Animais , Colite/induzido quimicamente , Colite/metabolismo , Colo/metabolismo , Células Epiteliais/metabolismo , Glucosilceramidase/metabolismo , Glucosiltransferases/metabolismo , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Permeabilidade/efeitos dos fármacos , Proteína da Zônula de Oclusão-1/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...